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24. THE COSMOLOGICAL PARAMETERS
Updated November 2013, by O. Lahav (University College London) and A.R. Liddle
(University of Edinburgh).

24.1. Parametrizing the Universe

Rapid advances in observational cosmology have led to the establishment of a precision
cosmological model, with many of the key cosmological parameters determined to one
or two significant figure accuracy. Particularly prominent are measurements of cosmic
microwave background (CMB) anisotropies, with the highest precision observations being
those of the Planck Satellite [1,2] which for temperature anisotropies supersede the
iconic WMAP results [3,4]. However the most accurate model of the Universe requires
consideration of a range of different types of observation, with complementary probes
providing consistency checks, lifting parameter degeneracies, and enabling the strongest
constraints to be placed.

The term ‘cosmological parameters’ is forever increasing in its scope, and nowadays
often includes the parameterization of some functions, as well as simple numbers
describing properties of the Universe. The original usage referred to the parameters
describing the global dynamics of the Universe, such as its expansion rate and curvature.
Also now of great interest is how the matter budget of the Universe is built up from its
constituents: baryons, photons, neutrinos, dark matter, and dark energy. We need to
describe the nature of perturbations in the Universe, through global statistical descriptors
such as the matter and radiation power spectra. There may also be parameters describing
the physical state of the Universe, such as the ionization fraction as a function of time
during the era since recombination. Typical comparisons of cosmological models with
observational data now feature between five and ten parameters.

24.1.1. The global description of the Universe :

Ordinarily, the Universe is taken to be a perturbed Robertson–Walker space-time with
dynamics governed by Einstein’s equations. This is described in detail by Olive and
Peacock in this volume. Using the density parameters Ωi for the various matter species
and ΩΛ for the cosmological constant, the Friedmann equation can be written

∑

i

Ωi + ΩΛ − 1 =
k

R2H2
, (24.1)

where the sum is over all the different species of material in the Universe. This equation
applies at any epoch, but later in this article we will use the symbols Ωi and ΩΛ to refer
to the present values.

The complete present state of the homogeneous Universe can be described by giving the
current values of all the density parameters and the Hubble constant h (the present-day
Hubble parameter being written H0 = 100h kms−1 Mpc−1). A typical collection would be
baryons Ωb, photons Ωγ , neutrinos Ων , and cold dark matter Ωc (given charge neutrality,
the electron density is guaranteed to be too small to be worth considering separately and
is included with the baryons). The spatial curvature can then be determined from the
other parameters using Eq. (24.1). The total present matter density Ωm = Ωc + Ωb is
sometimes used in place of the cold dark matter density Ωc.
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2 24. The Cosmological Parameters

These parameters also allow us to track the history of the Universe back in time, at
least until an epoch where interactions allow interchanges between the densities of the
different species, which is believed to have last happened at neutrino decoupling, shortly
before Big Bang Nucleosynthesis (BBN). To probe further back into the Universe’s
history requires assumptions about particle interactions, and perhaps about the nature of
physical laws themselves.

The standard neutrino sector has three flavors. For neutrinos of mass in the range
5 × 10−4 eV to 1 MeV, the density parameter in neutrinos is predicted to be

Ωνh2 =

∑

mν

93 eV
, (24.2)

where the sum is over all families with mass in that range (higher masses need a more
sophisticated calculation). We use units with c = 1 throughout. Results on atmospheric
and Solar neutrino oscillations [5] imply non-zero mass-squared differences between the
three neutrino flavors. These oscillation experiments cannot tell us the absolute neutrino
masses, but within the simple assumption of a mass hierarchy suggest a lower limit of
approximately 0.06 eV on the sum of the neutrino masses.

Even a mass this small has a potentially observable effect on the formation of structure,
as neutrino free-streaming damps the growth of perturbations. Analyses commonly now
either assume a neutrino mass sum fixed at this lower limit, or allow the neutrino mass
sum as a variable parameter. To date there is no decisive evidence of any effects from
either neutrino masses or an otherwise non-standard neutrino sector, and observations
impose quite stringent limits, which we summarize in Section 24.3.4. However, we note
that the inclusion of the neutrino mass sum as a free parameter can affect the derived
values of other cosmological parameters.

24.1.2. Inflation and perturbations :

A complete model of the Universe should include a description of deviations from
homogeneity, at least in a statistical way. Indeed, some of the most powerful probes of
the parameters described above come from the evolution of perturbations, so their study
is naturally intertwined in the determination of cosmological parameters.

There are many different notations used to describe the perturbations, both in terms
of the quantity used to describe the perturbations and the definition of the statistical
measure. We use the dimensionless power spectrum ∆2 as defined in Olive and Peacock
(also denoted P in some of the literature). If the perturbations obey Gaussian statistics,
the power spectrum provides a complete description of their properties.

From a theoretical perspective, a useful quantity to describe the perturbations is the
curvature perturbation R, which measures the spatial curvature of a comoving slicing of
the space-time. A simple case is the Harrison–Zel’dovich spectrum, which corresponds
to a constant ∆2

R. More generally, one can approximate the spectrum by a power-law,
writing

∆2
R(k) = ∆2

R(k∗)

[

k

k∗

]ns−1

, (24.3)
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24. The Cosmological Parameters 3

where ns is known as the spectral index, always defined so that ns = 1 for the
Harrison–Zel’dovich spectrum, and k∗ is an arbitrarily chosen scale. The initial spectrum,
defined at some early epoch of the Universe’s history, is usually taken to have a simple
form such as this power-law, and we will see that observations require ns close to one.
Subsequent evolution will modify the spectrum from its initial form.

The simplest mechanism for generating the observed perturbations is the inflationary
cosmology, which posits a period of accelerated expansion in the Universe’s early
stages [6,7]. It is a useful working hypothesis that this is the sole mechanism for
generating perturbations, and it may further be assumed to be the simplest class of
inflationary model, where the dynamics are equivalent to that of a single scalar field φ
with canonical kinetic energy slowly rolling on a potential V (φ). One may seek to verify
that this simple picture can match observations and to determine the properties of V (φ)
from the observational data. Alternatively, more complicated models, perhaps motivated
by contemporary fundamental physics ideas, may be tested on a model-by-model basis.

Inflation generates perturbations through the amplification of quantum fluctuations,
which are stretched to astrophysical scales by the rapid expansion. The simplest models
generate two types, density perturbations which come from fluctuations in the scalar
field and its corresponding scalar metric perturbation, and gravitational waves which
are tensor metric fluctuations. The former experience gravitational instability and lead
to structure formation, while the latter can influence the CMB anisotropies. Defining
slow-roll parameters, with primes indicating derivatives with respect to the scalar field, as

ǫ =
m2

Pl

16π

(

V ′

V

)2

; η =
m2

Pl

8π

V ′′

V
, (24.4)

which should satisfy ǫ, |η| ≪ 1, the spectra can be computed using the slow-roll
approximation as

∆2
R(k) ≃

8

3m4
Pl

V

ǫ

∣

∣

∣

∣

∣

k=aH

; ∆2
t (k) ≃

128

3m4
Pl

V

∣

∣

∣

∣

∣

k=aH

. (24.5)

In each case, the expressions on the right-hand side are to be evaluated when the scale k
is equal to the Hubble radius during inflation. The symbol ‘≃’ here indicates use of the
slow-roll approximation, which is expected to be accurate to a few percent or better.

From these expressions, we can compute the spectral indices [8]

ns ≃ 1 − 6ǫ + 2η ; nt ≃ −2ǫ . (24.6)

Another useful quantity is the ratio of the two spectra, defined by

r ≡
∆2

t (k∗)

∆2
R(k∗)

. (24.7)

We have
r ≃ 16ǫ ≃ −8nt , (24.8)
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4 24. The Cosmological Parameters

which is known as the consistency equation.

One could consider corrections to the power-law approximation, which we discuss later.
However, for now we make the working assumption that the spectra can be approximated
by power laws. The consistency equation shows that r and nt are not independent
parameters, and so the simplest inflation models give initial conditions described by three
parameters, usually taken as ∆2

R, ns, and r, all to be evaluated at some scale k∗, usually
the ‘statistical center’ of the range explored by the data. Alternatively, one could use
the parametrization V , ǫ, and η, all evaluated at a point on the putative inflationary
potential.

After the perturbations are created in the early Universe, they undergo a complex
evolution up until the time they are observed in the present Universe. While the
perturbations are small, this can be accurately followed using a linear theory numerical
code such as CAMB or CLASS [9]. This works right up to the present for the CMB,
but for density perturbations on small scales non-linear evolution is important and can be
addressed by a variety of semi-analytical and numerical techniques. However the analysis
is made, the outcome of the evolution is in principle determined by the cosmological
model, and by the parameters describing the initial perturbations, and hence can be used
to determine them.

Of particular interest are CMB anisotropies. Both the total intensity and two
independent polarization modes are predicted to have anisotropies. These can be
described by the radiation angular power spectra Cℓ as defined in the article of Scott
and Smoot in this volume, and again provide a complete description if the density
perturbations are Gaussian.

24.1.3. The standard cosmological model :

We now have most of the ingredients in place to describe the cosmological model.
Beyond those of the previous subsections, we need a measure of the ionization state of
the Universe. The Universe is known to be highly ionized at low redshifts (otherwise
radiation from distant quasars would be heavily absorbed in the ultra-violet), and
the ionized electrons can scatter microwave photons altering the pattern of observed
anisotropies. The most convenient parameter to describe this is the optical depth to
scattering τ (i.e., the probability that a given photon scatters once); in the approximation
of instantaneous and complete reionization, this could equivalently be described by the
redshift of reionization zion.

As described in Sec. 24.4, models based on these parameters are able to give a
good fit to the complete set of high-quality data available at present, and indeed some
simplification is possible. Observations are consistent with spatial flatness, and indeed
the inflation models so far described automatically generate negligible spatial curvature,
so we can set k = 0; the density parameters then must sum to unity, and so one can be
eliminated. The neutrino energy density is often not taken as an independent parameter.
Provided the neutrino sector has the standard interactions, the neutrino energy density,
while relativistic, can be related to the photon density using thermal physics arguments,
and a minimal assumption takes the neutrino mass sum to be that of the lowest mass
solution to the neutrino oscillation constraints, namely 0.06 eV. In addition, there is no
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24. The Cosmological Parameters 5

observational evidence for the existence of tensor perturbations (though the upper limits
are fairly weak), and so r could be set to zero. This leaves seven parameters, which is
the smallest set that can usefully be compared to the present cosmological data set. This
model is referred to by various names, including ΛCDM, the concordance cosmology, and
the standard cosmological model.

Of these parameters, only Ωr is accurately measured directly. The radiation density
is dominated by the energy in the CMB, and the COBE satellite FIRAS experiment
determined its temperature to be T = 2.7255 ± 0.0006 K [10], ‡ corresponding to
Ωr = 2.47 × 10−5h−2. It typically need not be varied in fitting other data. Hence the
minimum number of cosmological parameters varied in fits to data is six, though as
described below there may additionally be many ‘nuisance’ parameters necessary to
describe astrophysical processes influencing the data.

In addition to this minimal set, there is a range of other parameters which might prove
important in future as the data-sets further improve, but for which there is so far no
direct evidence, allowing them to be set to a specific value for now. We discuss various
speculative options in the next section. For completeness at this point, we mention one
other interesting parameter, the helium fraction, which is a non-zero parameter that can
affect the CMB anisotropies at a subtle level. Fields, Molaro and Sarkar in this volume
discuss current measures of this parameter. It is usually fixed in microwave anisotropy
studies, but the data are approaching a level where allowing its variation may become
mandatory.

Most attention to date has been on parameter estimation, where a set of parameters
is chosen by hand and the aim is to constrain them. Interest has been growing towards
the higher-level inference problem of model selection, which compares different choices of
parameter sets. Bayesian inference offers an attractive framework for cosmological model
selection, setting a tension between model predictiveness and ability to fit the data.

24.1.4. Derived parameters :

The parameter list of the previous subsection is sufficient to give a complete description
of cosmological models which agree with observational data. However, it is not a unique
parameterization, and one could instead use parameters derived from that basic set.
Parameters which can be obtained from the set given above include the age of the
Universe, the present horizon distance, the present neutrino background temperature,
the epoch of matter–radiation equality, the epochs of recombination and decoupling,
the epoch of transition to an accelerating Universe, the baryon-to-photon ratio, and the
baryon to dark matter density ratio. In addition, the physical densities of the matter
components, Ωih

2, are often more useful than the density parameters. The density
perturbation amplitude can be specified in many different ways other than the large-scale

‡ Unless stated otherwise, all quoted uncertainties in this article are one-sigma/68%
confidence and all upper limits are 95% confidence. Cosmological parameters sometimes
have significantly non-Gaussian uncertainties. Throughout we have rounded central values,
and especially uncertainties, from original sources in cases where they appear to be given
to excessive precision.
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6 24. The Cosmological Parameters

primordial amplitude, for instance, in terms of its effect on the CMB, or by specifying a
short-scale quantity, a common choice being the present linear-theory mass dispersion on
a scale of 8 h−1Mpc, known as σ8.

Different types of observation are sensitive to different subsets of the full cosmological
parameter set, and some are more naturally interpreted in terms of some of the derived
parameters of this subsection than on the original base parameter set. In particular, most
types of observation feature degeneracies whereby they are unable to separate the effects
of simultaneously varying several of the base parameters.

24.2. Extensions to the standard model

This section discusses some ways in which the standard model could be extended.
At present, there is no positive evidence in favor of any of these possibilities, which
are becoming increasingly constrained by the data, though there always remains the
possibility of trace effects at a level below present observational capability.

24.2.1. More general perturbations :

The standard cosmology assumes adiabatic, Gaussian perturbations. Adiabaticity
means that all types of material in the Universe share a common perturbation, so that if
the space-time is foliated by constant-density hypersurfaces, then all fluids and fields are
homogeneous on those slices, with the perturbations completely described by the variation
of the spatial curvature of the slices. Gaussianity means that the initial perturbations
obey Gaussian statistics, with the amplitudes of waves of different wavenumbers being
randomly drawn from a Gaussian distribution of width given by the power spectrum.
Note that gravitational instability generates non-Gaussianity; in this context, Gaussianity
refers to a property of the initial perturbations, before they evolve.

The simplest inflation models, based on one dynamical field, predict adiabatic
perturbations and a level of non-Gaussianity which is too small to be detected by any
experiment so far conceived. For present data, the primordial spectra are usually assumed
to be power laws.

24.2.1.1. Non-power-law spectra:

For typical inflation models, it is an approximation to take the spectra as power laws,
albeit usually a good one. As data quality improves, one might expect this approximation
to come under pressure, requiring a more accurate description of the initial spectra,
particularly for the density perturbations. In general, one can expand ln ∆2

R as

ln ∆2
R(k) = ln∆2

R(k∗) + (ns,∗ − 1) ln
k

k∗
+

1

2

dns

d ln k

∣

∣

∣

∣

∗

ln2 k

k∗
+ · · · , (24.9)

where the coefficients are all evaluated at some scale k∗. The term dns/d ln k|∗ is often
called the running of the spectral index [11]. Once non-power-law spectra are allowed, it
is necessary to specify the scale k∗ at which the spectral index is defined.
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24. The Cosmological Parameters 7

24.2.1.2. Isocurvature perturbations:

An isocurvature perturbation is one which leaves the total density unperturbed, while
perturbing the relative amounts of different materials. If the Universe contains N fluids,
there is one growing adiabatic mode and N − 1 growing isocurvature modes (for reviews
see Ref. 12 and Ref. 7). These can be excited, for example, in inflationary models where
there are two or more fields which acquire dynamically-important perturbations. If one
field decays to form normal matter, while the second survives to become the dark matter,
this will generate a cold dark matter isocurvature perturbation.

In general, there are also correlations between the different modes, and so the full
set of perturbations is described by a matrix giving the spectra and their correlations.
Constraining such a general construct is challenging, though constraints on individual
modes are beginning to become meaningful, with no evidence that any other than the
adiabatic mode must be non-zero.

24.2.1.3. Seeded perturbations:

An alternative to laying down perturbations at very early epochs is that they are
seeded throughout cosmic history, for instance by topological defects such as cosmic
strings. It has long been excluded that these are the sole original of structure, but
they could contribute part of the perturbation signal, current limits being just a few
percent [13]. In particular, cosmic defects formed in a phase transition ending inflation
is a plausible scenario for such a contribution.

24.2.1.4. Non-Gaussianity:

Multi-field inflation models can also generate primordial non-Gaussianity (reviewed,
e.g., in Ref. 7). The extra fields can either be in the same sector of the underlying theory
as the inflaton, or completely separate, an interesting example of the latter being the
curvaton model [14]. Current upper limits on non-Gaussianity are becoming stringent,
but there remains strong motivation to push down those limits and perhaps reveal trace
non-Gaussianity in the data. If non-Gaussianity is observed, its nature may favor an
inflationary origin, or a different one such as topological defects.

24.2.2. Dark matter properties :

Dark matter properties are discussed in the article by Drees and Gerbier in this
volume. The simplest assumption concerning the dark matter is that it has no significant
interactions with other matter, and that its particles have a negligible velocity as far as
structure formation is concerned. Such dark matter is described as ‘cold,’ and candidates
include the lightest supersymmetric particle, the axion, and primordial black holes. As
far as astrophysicists are concerned, a complete specification of the relevant cold dark
matter properties is given by the density parameter Ωc, though those seeking to directly
detect it are as interested in its interaction properties.

Cold dark matter is the standard assumption and gives an excellent fit to observations,
except possibly on the shortest scales where there remains some controversy concerning
the structure of dwarf galaxies and possible substructure in galaxy halos. It has long been
excluded for all the dark matter to have a large velocity dispersion, so-called ‘hot’ dark
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8 24. The Cosmological Parameters

matter, as it does not permit galaxies to form; for thermal relics the mass must be above
about 1 keV to satisfy this constraint, though relics produced non-thermally, such as the
axion, need not obey this limit. However, in future further parameters might need to
be introduced to describe dark matter properties relevant to astrophysical observations.
Suggestions which have been made include a modest velocity dispersion (warm dark
matter) and dark matter self-interactions. There remains the possibility that the dark
matter is comprized of two separate components, e.g., a cold one and a hot one, an
example being if massive neutrinos have a non-negligible effect.

24.2.3. Relativistic species :

The number of relativistic species in the young Universe (omitting photons) is denoted
Neff . In the standard cosmological model only the three neutrino species contribute,
and its baseline value is assumed fixed at 3.046 (the small shift from 3 is because of
a slight predicted deviation from a thermal distribution [15]) . However other species
could contribute, for example extra neutrino species, possibly of sterile type, or massless
Goldstone bosons or other scalars. It is hence interesting to study the effect of allowing
this parameter to vary, and indeed although 3.046 is consistent with the data, most
analyses currently suggest a somewhat higher value (e.g., Ref. 16).

24.2.4. Dark energy :

While the standard cosmological model given above features a cosmological constant,
in order to explain observations indicating that the Universe is presently accelerating,
further possibilities exist under the general headings of ‘dark energy’ and ‘modified
gravity’. These topics are described in detail in the article by Mortonson, Weinberg and
White in this volume. This article focuses on the case of the cosmological constant, as
this simple case is a good match to existing data. We note that more general treatments
of dark energy/modified gravity will lead to weaker constraints on other parameters.

24.2.5. Complex ionization history :

The full ionization history of the Universe is given by the ionization fraction as a
function of redshift z. The simplest scenario takes the ionization to have the small residual
value left after recombination up to some redshift zion, at which point the Universe
instantaneously reionizes completely. Then there is a one-to-one correspondence between
τ and zion (that relation, however, also depending on other cosmological parameters). An
accurate treatment of this process will track separate histories for hydrogen and helium.
While currently rapid ionization appears to be a good approximation, as data improve a
more complex ionization history may need to be considered.

24.2.6. Varying ‘constants’ :

Variation of the fundamental constants of Nature over cosmological times is another
possible enhancement of the standard cosmology. There is a long history of study of
variation of the gravitational constant GN, and more recently attention has been drawn
to the possibility of small fractional variations in the fine-structure constant. There is
presently no observational evidence for the former, which is tightly constrained by a
variety of measurements. Evidence for the latter has been claimed from studies of spectral
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line shifts in quasar spectra at redshift z ≈ 2 [17], but this is presently controversial and
in need of further observational study.

24.2.7. Cosmic topology :

The usual hypothesis is that the Universe has the simplest topology consistent with
its geometry, for example that a flat Universe extends forever. Observations cannot tell
us whether that is true, but they can test the possibility of a non-trivial topology on
scales up to roughly the present Hubble scale. Extra parameters would be needed to
specify both the type and scale of the topology, for example, a cuboidal topology would
need specification of the three principal axis lengths. At present, there is no evidence for
non-trivial cosmic topology [18].

24.3. Probes

The goal of the observational cosmologist is to utilize astronomical information
to derive cosmological parameters. The transformation from the observables to the
parameters usually involves many assumptions about the nature of the objects, as well as
of the dark sector. Below we outline the physical processes involved in each probe, and
the main recent results. The first two subsections concern probes of the homogeneous
Universe, while the remainder consider constraints from perturbations.

In addition to statistical uncertainties we note three sources of systematic uncertainties
that will apply to the cosmological parameters of interest: (i) due to the assumptions
on the cosmological model and its priors (i.e., the number of assumed cosmological
parameters and their allowed range); (ii) due to the uncertainty in the astrophysics of the
objects (e.g., light curve fitting for supernovae or the mass–temperature relation of galaxy
clusters); and (iii) due to instrumental and observational limitations (e.g., the effect of
‘seeing’ on weak gravitational lensing measurements, or beam shape on CMB anisotropy
measurements).

These systematics, the last two of which appear as ‘nuisance parameters’, pose a
challenging problem to the statistical analysis. We attempt to fit the whole Universe
with 6 to 12 parameters, but we might need to include hundreds of nuisance parameters,
some of them highly correlated with the cosmological parameters of interest (for example
time-dependent galaxy biasing could mimic growth of mass fluctuations). Fortunately,
there is some astrophysical prior knowledge on these effects, and a small number of
physically-motivated free parameters would ideally be preferred in the cosmological
parameter analysis.

24.3.1. Direct measures of the Hubble constant :

In 1929, Edwin Hubble discovered the law of expansion of the Universe by measuring
distances to nearby galaxies. The slope of the relation between the distance and recession
velocity is defined to be the Hubble constant H0. Astronomers argued for decades on
the systematic uncertainties in various methods and derived values over the wide range
40 kms−1 Mpc−1 <

∼ H0
<
∼ 100 kms−1 Mpc−1.

One of the most reliable results on the Hubble constant comes from the Hubble Space
Telescope Key Project [19]. This study used the empirical period–luminosity relations
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for Cepheid variable stars to obtain distances to 31 galaxies, and calibrated a number of
secondary distance indicators—Type Ia Supernovae (SNe Ia), the Tully–Fisher relation,
surface-brightness fluctuations, and Type II Supernovae—measured over distances of 400
to 600 Mpc. They estimated H0 = 72 ± 3 (statistical) ± 7 (systematic) km s−1 Mpc−1.

A recent study [20] of over 600 Cepheids in the host galaxies of eight recent SNe Ia,
observed with an improved camera on board the Hubble Space Telescope, was used to
calibrate the magnitude–redshift relation for 240 SNe Ia. This yielded an even more
precise figure, H0 = 73.8 ± 2.4 km s−1 Mpc−1 (including both statistical and systematic
errors). The major sources of uncertainty in this result are due to the heavy element
abundance of the Cepheids and the distance to the fiducial nearby galaxy, the Large
Magellanic Cloud, relative to which all Cepheid distances are measured.

The indirect determination of H0 by the Planck Collaboration [2] found a lower value,
H0 = 67.3 ± 1.2 km s−1 Mpc−1. As discussed in that paper, there is strong degeneracy of
H0 with other parameters, e.g. Ωm and the neutrino mass. The tension between the H0

from Planck and the traditional cosmic distance-ladder methods is under investigation.

24.3.2. Supernovae as cosmological probes :

Empirically, the peak luminosity of SNe Ia can be used as an efficient distance indicator
(e.g., Ref. 21), thus allowing cosmology to be constrained via the distance–redshift
relation. The favorite theoretical explanation for SNe Ia is the thermonuclear disruption
of carbon–oxygen white dwarfs. Although not perfect ‘standard candles’, it has been
demonstrated that by correcting for a relation between the light curve shape, color, and
the luminosity at maximum brightness, the dispersion of the measured luminosities can
be greatly reduced. There are several possible systematic effects which may affect the
accuracy of the use of SNe Ia as distance indicators, e.g., evolution with redshift and
interstellar extinction in the host galaxy and in the Milky Way.

Two major studies, the Supernova Cosmology Project and the High-z Supernova
Search Team, found evidence for an accelerating Universe [22], interpreted as due to
a cosmological constant or a dark energy component. When combined with the CMB
data (which indicates flatness, i.e., Ωm + ΩΛ = 1), the best-fit values were Ωm ≈ 0.3 and
ΩΛ ≈ 0.7. Most results in the literature are consistent with the w = −1 cosmological
constant case. Taking w = −1, the SNLS3 team found, by combining their SNIa data
with baryon acoustic oscillation (BAO) and WMAP7 data, Ωm = 0.279+0.019

−0.015 and

ΩΛ = 0.724+0.017
−0.016, including both statistical and systematic errors [23]. This includes

a correction for the recently-discovered relationship between host galaxy mass and
supernova absolute brightness. This agrees with earlier results [24,25], but note the
somewhat higher value for Ωm from Planck (see Table 24.1). Future experiments will aim
to set constraints on the cosmic equation of state w(z).
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24.3.3. Cosmic microwave background :

The physics of the CMB is described in detail by Scott and Smoot in this volume.
Before recombination, the baryons and photons are tightly coupled, and the perturbations
oscillate in the potential wells generated primarily by the dark matter perturbations.
After decoupling, the baryons are free to collapse into those potential wells. The CMB
carries a record of conditions at the time of last scattering, often called primary
anisotropies. In addition, it is affected by various processes as it propagates towards us,
including the effect of a time-varying gravitational potential (the integrated Sachs–Wolfe
effect), gravitational lensing, and scattering from ionized gas at low redshift.

The primary anisotropies, the integrated Sachs–Wolfe effect, and scattering from a
homogeneous distribution of ionized gas, can all be calculated using linear perturbation
theory. Available codes include CAMB and CLASS [9], the former widely used embedded
within the analysis package CosmoMC [26]. Gravitational lensing is also calculated in
these codes. Secondary effects such as inhomogeneities in the reionization process, and
scattering from gravitationally-collapsed gas (the Sunyaev–Zel’dovich (SZ) effect), require
more complicated, and more uncertain, calculations.

The upshot is that the detailed pattern of anisotropies depends on all of the
cosmological parameters. In a typical cosmology, the anisotropy power spectrum [usually
plotted as ℓ(ℓ + 1)Cℓ] features a flat plateau at large angular scales (small ℓ), followed
by a series of oscillatory features at higher angular scales, the first and most prominent
being at around one degree (ℓ ≃ 200). These features, known as acoustic peaks, represent
the oscillations of the photon–baryon fluid around the time of decoupling. Some features
can be closely related to specific parameters—for instance, the location of the first peak
probes the spatial geometry, while the relative heights of the peaks probes the baryon
density—but many other parameters combine to determine the overall shape.

The 2013 data release from the Planck satellite [1] has provided the most powerful
results to date on the spectrum of CMB temperature anisotropies, with a precision
determination of the temperature power spectrum to beyond ℓ = 2000, shown in Fig. 24.1.
The Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT) experiments
extend these results to higher angular resolution, though without full-sky coverage. The
most comprehensive measurements of CMB polarization come from the WMAP satellite
final (9-year) data release [3], giving the spectrum of E-polarization anisotropies and the
correlation spectrum between temperature and polarization (those spectra having first
been detected by DASI [27]) . These are consistent with models based on the parameters
we have described, and provide accurate determinations of many of those parameters [2].

The data provide an exquisite measurement of the location of the first acoustic peak,
determining the angular-diameter distance of the last-scattering surface. In combination
with other data this strongly constrains the spatial geometry, in a manner consistent
with spatial flatness and excluding significantly-curved Universes. CMB data also gives a
precision measurement of the age of the Universe. It gives a baryon density consistent
with, and at higher precision than, that coming from BBN. It affirms the need for both
dark matter and dark energy. It shows no evidence for dynamics of the dark energy, being
consistent with a pure cosmological constant (w = −1). The density perturbations are
consistent with a power-law primordial spectrum, and there is no indication yet of tensor
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Figure 24.1: The angular power spectrum of the CMB temperature anisotropies
from Planck, from Ref. 1. Note the x-axis switches from logarithmic to linear at
ℓ = 50. The solid line shows the prediction from the best-fitting ΛCDM model and
the band indicates the cosmic variance uncertainty. [Figure courtesy ESA/Planck

Collaboration.]

perturbations. The current best-fit for the reionization optical depth from CMB data,
τ = 0.091, is in line with models of how early structure formation induces reionization.

Planck has also made the first all-sky map of the CMB lensing field, which probes the
entire matter distribution in the Universe; this detection corresponds to about 25σ and
adds some additional constraining power to the CMB-only data-sets. ACT previously
announced the first detection of gravitational lensing of the CMB from the four-point
correlation of temperature variations [28]. These measurements agree with the expected
effect in the standard cosmology.

24.3.4. Galaxy clustering :

The power spectrum of density perturbations depends on the nature of the dark
matter. Within the ΛCDM model, the power spectrum shape depends primarily on the
primordial power spectrum and on the combination Ωmh which determines the horizon
scale at matter–radiation equality, with a subdominant dependence on the baryon density.
The matter distribution is most easily probed by observing the galaxy distribution, but
this must be done with care as the galaxies do not perfectly trace the dark matter
distribution. Rather, they are a ‘biased’ tracer of the dark matter. The need to allow for
such bias is emphasized by the observation that different types of galaxies show bias with
respect to each other. In particular scale-dependent and stochastic biasing may introduce
a systematic effect on the determination of cosmological parameters from redshift surveys.
Prior knowledge from simulations of galaxy formation or from gravitational lensing data
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could help to quantify biasing. Furthermore, the observed 3D galaxy distribution is in
redshift space, i.e., the observed redshift is the sum of the Hubble expansion and the
line-of-sight peculiar velocity, leading to linear and non-linear dynamical effects which
also depend on the cosmological parameters. On the largest length scales, the galaxies are
expected to trace the location of the dark matter, except for a constant multiplier b to the
power spectrum, known as the linear bias parameter. On scales smaller than 20 h−1 Mpc
or so, the clustering pattern is ‘squashed’ in the radial direction due to coherent infall,
which depends approximately on the parameter β ≡ Ω0.6

m /b (on these shorter scales, more
complicated forms of biasing are not excluded by the data). On scales of a few h−1 Mpc,
there is an effect of elongation along the line of sight (colloquially known as the ‘finger of
God’ effect) which depends on the galaxy velocity dispersion.

24.3.4.1. Baryonic acoustic oscillations:

The power spectra of the 2-degree Field (2dF) Galaxy Redshift Survey and the Sloan
Digital Sky Survey (SDSS) are well fit by a ΛCDM model and both surveys showed
evidence for BAOs [29,30]. The Baryon Oscillation Spectroscopic Survey (BOSS) of
Luminous Red Galaxies (LRGs) in the SDSS found consistency with the dark energy
equation of state w = −1 to within ±0.06 [31]. Similar results for w were obtained by
the WiggleZ survey [32]. The BAO data from recent galaxy redshift surveys together
with SN Ia data are shown in a Hubble diagram in Fig. 24.2.

24.3.4.2. Redshift distortion:

There is renewed interest in the ‘redshift distortion’ effect. As the measured redshift
of a galaxy is the sum of its redshift due to the Hubble expansion and its peculiar
velocity, this distortion depends on cosmological parameters [34] via the perturbation
growth rate in linear theory f(z) = d ln δ/d lna ≈ Ωγ(z), where γ ≃ 0.55 for the ΛCDM
model and is different for modified gravity models. Recent observational results show
that by measuring f(z) it is feasible to constrain γ and rule out certain modified gravity
models [35,36]. We note the degeneracy of the redshift-distortion pattern and the
geometric distortion (the so-called Alcock–Paczynski effect), e.g. as illustrated by the
WiggleZ survey [37].

24.3.4.3. Integrated Sachs–Wolfe effect:

The integrated Sachs–Wolfe (ISW) effect, described in the article by Scott and
Smoot, is the change in CMB photon energy when propagating through the changing
gravitational potential wells of developing cosmic structures. In linear theory, the ISW
signal is expected in universes where there is dark energy, curvature, or modified gravity.
Correlating the large-angle CMB anisotropies with very large scale structures, first
proposed in Ref. 38, has provided results which vary from no detection of this effect to
4σ detection [39,40].
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Figure 24.2: The cosmic distance scale with redshift. This modern version of the
’Hubble Diagram’ combines data from SN Ia as standard candles and BAO as
standard rulers in the LRG SSDS, BOSS, 6dFGRS, and WiggleZ galaxy surveys
and from the BOSS Lyman-alpha at high redshift. [Figure courtesy of C. Blake,
based on Ref. 33.]

24.3.4.4. Limits on neutrino mass from galaxy surveys and other probes:

Large-scale structure data constraints on Ων due to the neutrino free-streaming
effect [41]. Presently there is no clear detection, and upper limits on neutrino mass
are commonly estimated by comparing the observed galaxy power spectrum with a
four-component model of baryons, cold dark matter, a cosmological constant, and massive
neutrinos. Such analyses also assume that the primordial power spectrum is adiabatic,
scale-invariant, and Gaussian. Potential systematic effects include biasing of the galaxy
distribution and non-linearities of the power spectrum. An upper limit can also be derived
from CMB anisotropies alone, while additional cosmological data-sets can improve the
results.

Results using a photometric redshift sample of LRGs combined with WMAP, BAO,
Hubble constant and SNe Ia data gave a 95% confidence upper limit on the total neutrino
mass of 0.28eV [42]. Recent spectroscopic redshift surveys, with more accurate redshifts
but fewer galaxies, yielded similar upper limits for assumed flat ΛCDM model and
additional data-sets: 0.34eV from BOSS [43] and 0.29eV from WiggleZ [44]. Planck

+ WMAP polarization + highL CMB [2] give an upper limit of 0.66eV, and with
additional BAO data 0.23eV. The effective number of relativistic degrees of freedom
is Neff = 3.30 ± 0.27 in good agreement with the standard value Neff = 3.046. While
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the latest cosmological data do not yet constrain the sum of neutrino masses to below
0.2eV, as the lower limit on neutrino mass from terrestrial experiments is 0.06eV, it looks
promising that future cosmological surveys will detect the neutrino mass.

24.3.5. Clusters of galaxies :

A cluster of galaxies is a large collection of galaxies held together by their mutual
gravitational attraction. The largest ones are around 1015 Solar masses, and are the
largest gravitationally-collapsed structures in the Universe. Even at the present epoch
they are relatively rare, with only a few percent of galaxies being in clusters. They
provide various ways to study the cosmological parameters.

The first objects of a given kind form at the rare high peaks of the density distribution,
and if the primordial density perturbations are Gaussian distributed, their number
density is exponentially sensitive to the size of the perturbations, and hence can strongly
constrain it. Clusters are an ideal application in the present Universe. They are usually
used to constrain the amplitude σ8, as a sphere of radius 8 h−1 Mpc contains about
the right amount of material to form a cluster. One of the most useful observations at
present are of X-ray emission from hot gas lying within the cluster, whose temperature
is typically a few keV, and which can be used to estimate the mass of the cluster. A
theoretical prediction for the mass function of clusters can come either from semi-analytic
arguments or from numerical simulations. The same approach can be adopted at high
redshift (which for clusters means redshifts of order one) to attempt to measure σ8 at an
earlier epoch. The evolution of σ8 is primarily driven by the value of the matter density
Ωm, with a sub-dominant dependence on the dark energy properties.

The Planck observations were used to produce a sample of 189 clusters selected
by the SZ effect. The cluster mass function was constructed using a relation between
the SZ signal Y and cluster mass M . For an assumed flat ΛCDM model, the Planck

Collaboration found σ8 = 0.77± 0.02 and Ωm = 0.29± 0.02 [45]. Somewhat larger values
of both parameters are preferred by the Planck’s measurements of the primary CMB
anisotropies. The discrepancy might be resolved, for example, by using a different Y –M
calibration. For comparison with other results in the literature see their Fig. 10.

24.3.6. Clustering in the inter-galactic medium :

It is commonly assumed, based on hydrodynamic simulations, that the neutral
hydrogen in the inter-galactic medium (IGM) can be related to the underlying mass
distribution. It is then possible to estimate the matter power spectrum on scales of a
few megaparsecs from the absorption observed in quasar spectra, the so-called Lyman-α
forest. The usual procedure is to measure the power spectrum of the transmitted flux,
and then to infer the mass power spectrum. Photo-ionization heating by the ultraviolet
background radiation and adiabatic cooling by the expansion of the Universe combine to
give a simple power-law relation between the gas temperature and the baryon density.
It also follows that there is a power-law relation between the optical depth τ and ρb.
Therefore, the observed flux F = exp(−τ) is strongly correlated with ρb, which itself
traces the mass density. The matter and flux power spectra can be related by

Pm(k) = b2(k)PF(k) , (24.10)
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where b(k) is a bias function which is calibrated from simulations. The BOSS survey has
been used to detect and measure the BAO feature in the Lyman-α forest fluctuation
at redshift z = 2.4, with a result impressively consistent with the standard ΛCDM
model [46]. The Lyman-α flux power spectrum has also been used to constrain the
nature of dark matter, for example constraining the amount of warm dark matter [47].

24.3.7. Gravitational lensing :

Images of background galaxies are distorted by the gravitational effect of mass
variations along the line of sight. Deep gravitational potential wells such as galaxy
clusters generate ‘strong lensing’, leading to arcs, arclets and multiple images, while more
moderate perturbations give rise to ‘weak lensing’. Weak lensing is now widely used to
measure the mass power spectrum in selected regions of the sky (see Ref. 48 for reviews).
As the signal is weak, the image of deformed galaxy shapes (the ‘shear map’) must be
analyzed statistically to measure the power spectrum, higher moments, and cosmological
parameters.

The shear measurements are mainly sensitive to a combination of Ωm and the amplitude
σ8. For example, the weak-lensing signal detected by the CFHTLens Survey (over 154 sq.
deg. in 5 optical bands) yields, for a flat ΛCDM model, σ8(Ωm/0.27)0.6 = 0.79± 0.03 [49].
Earlier results for comparison are summarized in Ref. 48. There are various systematic
effects in the interpretation of weak lensing, e.g., due to atmospheric distortions during
observations, the redshift distribution of the background galaxies, the intrinsic correlation
of galaxy shapes, and non-linear modeling uncertainties.

24.3.8. Peculiar velocities :

Deviations from the Hubble flow directly probe the mass perturbations in the
Universe, and hence provide a powerful probe of the dark matter [50]. Peculiar velocities
are deduced from the difference between the redshift and the distance of a galaxy.
The observational difficulty is in accurately measuring distances to galaxies. Even the
best distance indicators (e.g., the Tully–Fisher relation) give an uncertainty of 15%
per galaxy, hence limiting the application of the method at large distances. Peculiar
velocities are mainly sensitive to Ωm, not to ΩΛ or dark energy. While at present
cosmological parameters derived from peculiar velocities are strongly affected by random
and systematic errors, a new generation of surveys may improve their accuracy. Three
promising approaches are the 6dF near-infrared survey of 15,000 peculiar velocities,
peculiar velocities of SNe Ia, and the kinematic Sunyaev–Zel’dovich effect.

24.4. Bringing observations together

Although it contains two ingredients—dark matter and dark energy—which have not
yet been verified by laboratory experiments, the ΛCDM model is almost universally
accepted by cosmologists as the best description of the present data. The approximate
values of some of the key parameters are Ωb ≈ 0.05, Ωc ≈ 0.25, ΩΛ ≈ 0.70, and a Hubble
constant h ≈ 0.70. The spatial geometry is very close to flat (and usually assumed
to be precisely flat), and the initial perturbations Gaussian, adiabatic, and nearly
scale-invariant.
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The most powerful data source is the CMB, which on its own supports all these main
tenets. Values for some parameters, as given in Ade et al. [2] and Hinshaw et al. [4],
are reproduced in Table 24.1. These particular results presume a flat Universe. The
constraints are somewhat strengthened by adding additional data-sets such as BAO, as
shown in the Table, though most of the constraining power resides in the CMB data.
We see that the Planck and WMAP constraints are similar, though with some shifts
within the uncertainties. For these six-parameter fits the parameter uncertainties are also
comparable; the additional precision of Planck data versus WMAP is only really apparent
when considering significantly larger parameter sets.

If the assumption of spatial flatness is lifted, it turns out that the CMB on its own only
weakly constrains the spatial curvature, due to a parameter degeneracy in the angular-
diameter distance. However inclusion of other data readily removes this. For example,
inclusion of BAO data, plus the assumption that the dark energy is a cosmological
constant, yields a constraint on Ωtot ≡

∑

Ωi +ΩΛ of Ωtot = 1.0005± 0.0033 [2]. Results
of this type are normally taken as justifying the restriction to flat cosmologies.

One parameter which is very robust is the age of the Universe, as there is a useful
coincidence that for a flat Universe the position of the first peak is strongly correlated
with the age. The CMB data give 13.81 ± 0.05 Gyr (assuming flatness). This is in good
agreement with the ages of the oldest globular clusters and radioactive dating.

The baryon density Ωb is now measured with high accuracy from CMB data alone,
and is consistent with the determination from BBN; Fields et al. in this volume quote the
range 0.021 ≤ Ωbh2 ≤ 0.025 (95% confidence).

While ΩΛ is measured to be non-zero with very high confidence, there is no evidence of
evolution of the dark energy density. Mortonson et al. in this volume quote the constraint
w = −1.13+0.13

−0.11 on a constant equation of state from a compilation of CMB and BAO
data, with the cosmological constant case w = −1 giving an excellent fit to the data.
Allowing more complicated forms of dark energy weakens the limits.

The data provide strong support for the main predictions of the simplest inflation
models: spatial flatness and adiabatic, Gaussian, nearly scale-invariant density pertur-
bations. But it is disappointing that there is no sign of primordial gravitational waves,
with the CMB data compilation providing an upper limit r < 0.11 at 95% confidence [2]
(weakening to 0.26 if running is allowed). The spectral index is clearly required to be less
than one by this data, though the strength of that conclusion can weaken if additional
parameters are included in the model fits.

Tests have been made for various types of non-Gaussianity, a particular example being
a parameter fNL which measures a quadratic contribution to the perturbations. Various
non-gaussianity shapes are possible (see Ref. 51 for details), and current constraints on the

popular ‘local’, ‘equilateral’, and ‘orthogonal’ types are f local
NL = 3 ± 6, f

equil
NL = −42 ± 75,

and fortho
NL = −25 ± 39 (these look weak, but prominent non-Gaussianity requires the

product fNL∆R to be large, and ∆R is of order 10−5). Clearly none of these give any
indication of primordial non-gaussianity.
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Table 24.1: Parameter constraints reproduced from Ref. 2 (Table 5) and Ref. 4
(Table 4), with some additional rounding. All columns assume the ΛCDM cosmology
with a power-law initial spectrum, no tensors, spatial flatness, and a cosmological
constant as dark energy. Planck take the sum of neutrino masses fixed to 0.06eV,
while WMAP set it to zero. Above the line are the six parameter combinations
actually fit to the data in the Planck analysis (θMC is a measure of the sound horizon
at last scattering); those below the line are derived from these. Two different data
combinations including Planck are shown to highlight the extent to which additional
data improve constraints. The first column is a combination of CMB data only
— Planck temperature plus WMAP polarization data plus high-resolution data
from ACT and SPT — while the second column adds BAO data from the SDSS,
BOSS, 6dF, and WiggleZ surveys. For comparison the last column shows the final
nine-year results from the WMAP satellite, combined with the same BAO data and
high-resolution CMB data (which they call eCMB). Note WMAP use ΩΛ directly as
a fit parameter rather than θMC. The perturbation amplitude ∆2

R is specified at

the scale 0.05 Mpc−1 for Planck, but 0.002 Mpc−1 for WMAP, so the spectral index
ns needs to be taken into account in comparing them. Uncertainties are shown at
68% confidence.

Planck+WP Planck+WP WMAP9+eCMB

+highL +highL+BAO +BAO

Ωbh2 0.02207± 0.00027 0.02214 ± 0.00024 0.02211 ± 0.00034

Ωch
2 0.1198± 0.0026 0.1187 ± 0.0017 0.1162 ± 0.0020

100 θMC 1.0413± 0.0006 1.0415 ± 0.0006 −

ns 0.958 ± 0.007 0.961 ± 0.005 0.958 ± 0.008

τ 0.091+0.013
−0.014 0.092 ± 0.013 0.079+0.011

−0.012

ln(1010∆2
R) 3.090 ± 0.025 3.091 ± 0.025 3.212 ± 0.029

h 0.673 ± 0.012 0.678 ± 0.008 0.688 ± 0.008

σ8 0.828 ± 0.012 0.826 ± 0.012 0.822+0.013
−0.014

Ωm 0.315+0.016
−0.017 0.308 ± 0.010 0.293 ± 0.010

ΩΛ 0.685+0.017
−0.016 0.692 ± 0.010 0.707 ± 0.010
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24.5. Outlook for the future

The concordance model is now well established, and there seems little room left for
any dramatic revision of this paradigm. A measure of the strength of that statement is
how difficult it has proven to formulate convincing alternatives.

Should there indeed be no major revision of the current paradigm, we can expect
future developments to take one of two directions. Either the existing parameter set
will continue to prove sufficient to explain the data, with the parameters subject to
ever-tightening constraints, or it will become necessary to deploy new parameters. The
latter outcome would be very much the more interesting, offering a route towards
understanding new physical processes relevant to the cosmological evolution. There are
many possibilities on offer for striking discoveries, for example:

• The cosmological effects of a neutrino mass may be unambiguously detected, shedding
light on fundamental neutrino properties;

• Detection of primordial non-Gaussianities would indicate that non-linear processes
influence the perturbation generation mechanism;

• Detection of variation in the dark-energy density (i.e., w 6= −1) would provide
much-needed experimental input into the nature of the properties of the dark energy.

These provide more than enough motivation for continued efforts to test the cosmological
model and improve its accuracy.

Over the coming years, there are a wide range of new observations which will bring
further precision to cosmological studies. Indeed, there are far too many for us to be able
to mention them all here, and so we will just highlight a few areas.

The CMB observations will improve in several directions. A current frontier is the
study of polarization, first detected in 2002 by DASI and for which power spectrum
measurements have now been made by several experiments. Planck will announce its first
polarization results in 2014. Future measurements may be able to separately detect the
two modes of polarization and a number of projects are underway with this goal.

An impressive array of dark energy surveys are already operational, under construction,
or proposed, including ground-based imaging surveys the Dark Energy Survey and LSST,
spectroscopic surveys such as MS-DESI, and space missions Euclid and WFIRST.

An exciting area for the future is radio surveys of the redshifted 21-cm line of hydrogen.
Because of the intrinsic narrowness of this line, by tuning the bandpass the emission from
narrow redshift slices of the Universe will be measured to extremely high redshift, probing
the details of the reionization process at redshifts up to perhaps 20. LOFAR is the first
instrument able to do this and is beginning its operations. In the longer term, the Square
Kilometre Array (SKA) will take these studies to a precision level.

The development of the first precision cosmological model is a major achievement.
However, it is important not to lose sight of the motivation for developing such a model,
which is to understand the underlying physical processes at work governing the Universe’s
evolution. On that side, progress has been much less dramatic. For instance, there are
many proposals for the nature of the dark matter, but no consensus as to which is

August 21, 2014 13:18



20 24. The Cosmological Parameters

correct. The nature of the dark energy remains a mystery. Even the baryon density, now
measured to an accuracy of a percent, lacks an underlying theory able to predict it within
orders of magnitude. Precision cosmology may have arrived, but at present many key
questions remain to motivate and challenge the cosmology community.
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